Continuous Control Primitive Trajectory Generation and Optimal Motion Splines for All-Wheel Steering Mobile Robots
نویسنده
چکیده
We present a method for trajectory generation for all-wheel steering mobile robots which can account for rough terrain and predictable vehicle dynamics and apply it to the problem of generating optimal motion splines. There has been little work in trajectory generation for vehicles with all-wheel steering capability compared to the Ackermann, differential-drive, or omnidirectional mobility system models. The presented method linearizes and inverts forward models of propulsion, suspension, and motion to minimize boundary state error given a parameterized set of controls. Our method for generating optimal motion splines between a set of state boundary constraints optimizes the free path heading boundary constraint while meeting position and orientation state constraints. We demonstrate this algorithm on the Rocky 8 rover platform, where parameterized linear velocity, curvature, and path heading controls are generated which satisfy position, orientation, and path heading constraints in rough terrain. Index Terms – Trajectory Generation, Mobile Robot, All-Wheel Steering, Motion Splines, Rough Terrain.
منابع مشابه
Direct Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملOptimal Load of Flexible Joint Mobile Robots Stability Approach
Optimal load of mobile robots, while carrying a load with predefined motion precision is an important consideration regarding their applications. In this paper a general formulation for finding maximum load carrying capacity of flexible joint mobile manipulators is presented. Meanwhile, overturning stability of the system and precision of the motion on the given end-effector trajectory are take...
متن کاملTrajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV
This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملOptimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کامل